SPEAR POWER SYSTEMS

It's All About the Batteries

April 26, 2023

RevA

An innovative company of

Technologies

Ecological transformation demands eMobility

Advancing eMobility drives the frontier of energy density without compromise to safety

Energy Density

Properly ratio of embedded energy (Wh) to volume (l).

Colloquially substituted for specific energy, ratio of energy to mass (kg)

• Drives range

Versus limits of vessel space and capacity, permits electric propulsion versus distance

• Drives life

Life is a byproduct of battery size; larger batteries last longer

• Drives power

Discharge is limited as a function of capacity; larger batteries can discharge more current

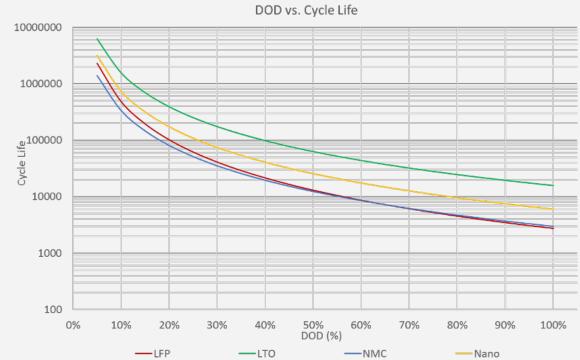
• Drives cost

More embedded energy per cell translates to less balance of system per kWh

	ENERGY DENSITY	SPECIFIC ENERGY
Cell	414 Wh/L	205 Wh/kg
Module	136 Wh/L	115 Wh/kg
String / System	96 Wh/L	111 Wh/kg

TRIDENT

Paradox: Life


Efforts to increase energy density compete with aspects that drive the benefits produced

• Aging concepts

Dynamic versus static aging; the role of depth of discharge (DoD) versus cycles. The role of calendar aging

• Competing properties

Cell level: chemistry choice, coating thickness, format. System level: thermal management

Paradox: Power

Power can be as important to performance as embedded energy. Increasing energy density decreases power density (W/1 or W/kg)

Technoloaie

• Benefits of power

For multirole batteries drives utility. For propulsion batteries limits charge rate, driving turn time

Competing properties

Cell level: chemistry selection, coating thickness. System level: thermal management

Paradox: Cost

Denser batteries lower the system to chemistry ratio, but force trades at cell and system level

• Cell choices

Performance, recycling, security of supply compromises with chemistry, country of origin, industry

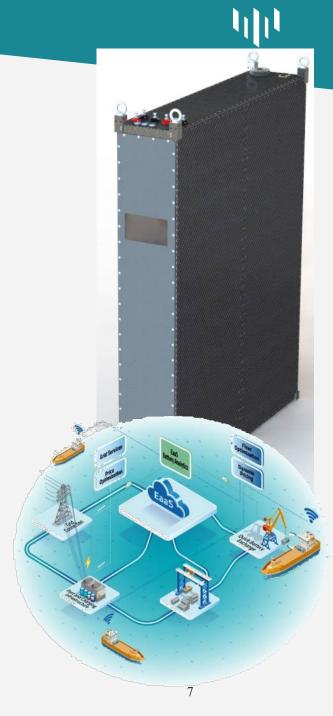
• System influences

Higher energy density means more to mitigate, demands more sophisticated system elements

Paths

Increasing energy density involves trades. Acceptability of trade is application and market specific

• Low power big box


Often LFP, less thermal management. Can be safe but system must not rely on chemistry. Application sensitive.

• Advanced chemistry big guns

At the limits of NMC, or working trades of LTO. With aggressive thermal management and safety balance of system is the big challenge. Cell supplier sensitive.

Swapping approaches

Reduces charge and moves toward standardization. Increases stakeholder count. Demands advanced ecosystem beyond single customer. Application specific.

Forecast

Energy density is the best opportunity for disruptive progress

• Alternatives

Hydrogen offers clear benefits and challenges, will be preferable to batteries in many applications

• Novel chemistries and architectures

Silicon anodes offer limited benefit. Protected anode not meeting with success. Solid state shows most promise but still not tangible nor perfectly safe.

• Disruptive safety

Technologies that reduce system impact of safety can significantly improve packaging ratio

F'rinstance: Washington State Ferries HEO

Trident [®] Solution	Versa Liquid Cooled	
Primary Usage	Battery Hybrid Propulsion	
Embedded Energy	10 MWh per ship	
Cooling Method	Liquid	
Operating Voltage Range	720 – 1000 VDC	
Max Discharge Power	10 MW (1.0 C)	
Delivery	5 Vessels 2023-2030	
Approvals/Certifications	US Coast Guard	

Jon Diller

Commercial Director +1 913 636 9574 jdiller@sensata.com

Proprietary & Confidential – DO NOT DISTRIBUTE